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“SIMPLIFICATION” IN PARTIAL DIFFERENTIAL EQUATIONS

CARLOS KENIG

Fourier analysis and partial differential equations have been intertwined since their
beginnings in the work of J. Fourier (1768—1830). In his study of heat conduction [15],
[16], Fourier derived an equation (the heat equation) to describe the heat flow in a one
dimensional bar, from Newton’s law of cooling. The equation [15] is

(1) O — O%u = 0,

where u is the temperature. Fourier solved the “initial value problem” (IVP). Thus, given
the initial temperature v of an infinite bar (0 near spatial infinity), Fourier calculated the
future temperature u at any point in the bar. In order to do this, Fourier made the following
claim: given any function u( on R (0 near infinity), it can be represented as an integral of
trigonometric functions

+o0
@) wo() = / 7 () dE,
where
L
3) o) = 5 / 2Ty () dar

We now denote ¢(§) = p(§), the Fourier transform of .

This claim by Fourier was very controversial: {e*™*%¢} are “good functions”, so how
can it be that “bad functions” can be represented as their integral? Fourier’s basic idea is
that there is a “simplification” in solving (IVP), and one only needs to solve for ug(x) =
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e?™*¢ (plane waves). One then obtains the general solution by integration. For the heat
equation, if ug(z) = €2, then u(x,t) = ™€ . =T IEF,

Even though Fourier’s claim is false as stated, for all uy and all points x, Fourier’s
method worked, and yielded important technological applications. Here is a sample of
them, all due to W. Thompson (Lord Kelvin) ([3], [36], [39])

e The construction of the transatlantic cable (1855).

e The calculation of the temperature of the Earth (1869).

e The calculation of the age of the Earth (1869).

e The prediction of tides (1876).

e The “harmonic analyzer”, a mechanical device that computed Fourier transforms
and thus predicted tides (1876).

e ctc.

The Fourier representation (2), which holds for many functions g, is still a topic of
intensive investigation. It was instrumental in the spectacular development of linear partial
differential equations in the 20" century. Nevertheless, linearity was essential, and the
natural world is mostly nonlinear.

Now we turn to a class of nonlinear equations, the dispersive ones, that appear in non-
linear phenomena of wave propagation. For those equations there is also a “simplifi-
cation”, this time asymptotically in time. Nonlinear dispersive equations are time rever-
sible, unlike the heat equation, and in the linear setting they can be solved by Fourier’s
method. Typically, they have a conserved energy, which may or may not have a sign.
These equations model phenomena of wave propagation coming from physics and engin-
eering. Some of the areas that give rise to these equations are water waves, lasers and
nonlinear optics, nonlinear elasticity, ferromagnetism, particle physics, general relativity
and as geometric flows in Kihler and Minkowski geometries. These equations have been
studied extensively in the last 40 years, but they were first introduced in the 19" century.
This is currently one of the most exciting areas of partial differential equations. Here are
some examples:

a): The (generalized) Korteweg—de Vries equation (gK dV'); (K dV corresponds to
k = 1) (models water waves in shallow channels)

@) Ou — Bu+uFo,u=0 ze€RteR,
U,|t:0 = Up, k= 1,2,3,...
b): Nonlinear Schrodinger equations (NLS) (model nonlinear optics, lasers, ferro-
magnetism, quantum field theory)
5) 0+ Aut |uflu=0 zeRY teR,
uli—g = Uo, p> 1.
¢): Nonlinear wave equations (NLW) (models for nonlinear elasticity, particle phys-
ics, general relativity)
OPu—Aust [uflu=0 xeRN teR,
(0)
uli=o = ug, Optult=0 = w1, p>1
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In both (5) and (6), p = % is the “energy critical” case. The + sign corresponds to the

“defocusing” case, while the — sign corresponds to the “focusing” case.
d): Wave maps (WM), a geometric example (models particle physics, o-models,
general relativity).

uw:RY xR — SN — RN
where S¥ is the unit sphere.

{agu — Au— [|Vul? — (dpu)?u = 0,

u|t:0 = Uo, atu|t:0 = Uz.

The “energy critical” case is NV = 2.

These nonlinear equations are called “dispersive” because their linear parts are disper-
sive. Heuristically, linear evolution equations are dispersive, when the flow “spreads out”
or “disperses” the initial data. Since energy is conserved, the size of the linear solution
has to become small for large time. This is called the “dispersive effect”. In the nonlinear
versions, there may be solutions that evolve non—dispersively, like static solutions or soli-
tons (traveling wave solutions). They are “nonlinear objects”. Their existence has been a
“mystery” since the 19" century. John Scott Russell, a Scottish engineer, first saw such
a traveling wave propagating in a canal, in 1834, and chased it on horseback [28]. His
observations were viewed with skepticism by Airy and Stokes, since their linear water
wave theories could not explain them. Rayleigh and Boussinesq put forward nonlinear
theories to explain Russell’s observations. Finally, in 1895 [24], Korteweg and de Vries
formulated the K'dV equation (¢/K dV'); in (4). However, its fundamental properties were
not understood until much later.

In the late 70’s and 80’s many properties of nonlinear dispersive equations were dis-
covered, notably the existence and stability (mostly conditionally) of traveling waves. In
the late 80’s and early 90’s, Kenig—Ponce—Vega introduced (see [23] for instance) the
systematic use of the machinery of modern Fourier analysis to study the associated linear
problems, which was then used perturbatively to study the associated nonlinear problems.
The resulting body of techniques, with refinements and extensions by Bourgain, Tao,
Tataru, Klainerman-Machedon and many others, proved extremely powerful. Thus, satis-
factory theories were obtained for the “short time well-posedness™ and for the “global in
time well-posedness for small data”. A notion of “criticality” linked to “scaling” emerged
then.

The last 20 years have seen a shift in emphasis to the study of the long-time behav-
ior of large solutions. Issues like blow-up, global existence and scattering came to the
forefront, especially in critical problems. This study was transformed by work of Kenig—
Merle ([20], [21], [22], etc) in the period 2005-2009, who introduced the “concentration—
compactness/rigidity theorem” method, which has now become the standard approach to
this problematic. The ultimate goal of the Kenig—Merle program was to attack the prob-
lem of “asymptotic soliton resolution”.

Since the 1970’s there has been a widely held belief in the mathematical physics com-
munity that “coherent structures” and “free radiation” describe the long-time asymptotic
behavior of solutions to nonlinear dispersive equations. This came to be known as the
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“soliton resolution conjecture”. Roughly speaking, this conjecture says that, asymptotical-
ly in time, for nonlinear dispersive equations, the evolution decouples as a sum of (modu-
lated) traveling wave solutions and a free radiation term (that is a dispersive term solving
the associated linear equation). This is a remarkable, beautiful claim, which shows an “as-
ymptotic simplification” in the complex, long—time dynamics of general solutions. The
origin of this conjecture goes back to the puzzling numerical simulation of Fermi—Pasta—
Ulam [38] at Los Alamos in the early 1950’s. This was the birth of scientific computation.
Fermi thought that a good use of “The Maniac”, the computer built at Los Alamos to do
the calculations for the Manhattan Project, was to apply it to a theoretical scientific pur-
pose. He proposed a numerical experiment (the first numerical simulation of a partial dif-
ferential equation) to verify the principle of “thermalization”. Thus, Fermi—Pasta—Ulam
considered a vibrating string, with a quadratic nonlinearity, modeled by discretization on
a lattice. “Thermalization” meant that if one considered data of energy concentrated in
one mode, the effect of the evolution should be to equidistribute the energy among all
modes. This was what Fermi expected. Surprisingly, the simulation showed that this need
not happen. Fermi called this “a minor discovery” (see [38]). Fermi died soon after and
this remained a mystery for many years. In the 1960’s, M. Kruskal [25] made the obser-
vation that if one lets the mesh of the lattice tend to 0, the discretization of the vibrating
string, with quadratic nonlinearity, converges to the K dV equation (4) above, with £ = 1.
As was first observed by Russell on his horse in 1834, the K'dV equation has traveling
wave solutions, and from those it is obvious that “thermalization” cannot take place.

In 1965, Kruskal-Zabusky [40] carried out another very influential numerical simula-
tion on KdV and discovered two remarkable facts:

a): For simple data concentrated on one mode, the evolution, for large time “equals”
a sum of traveling waves.

b): If the data is a sum of two traveling waves, through the evolution the two trav-
eling waves eventually collide, and after the collision, they reappear unchanged,
except for translation (‘“‘elastic collision”).

a) was performed in connection with the Fermi—Pasta—Ulam paradox. It directly gave rise
to the “soliton resolution conjecture”. b), in retrospect, was a consequence of “integra-
bility”, an important new concept in nonlinear science, that emerged from this simulation
(see [41]). Integrable nonlinear equations can be reduced to a collection of linear prob-
lems. It is a very non-generic phenomenon, but remarkably ubiquitous. For the (¢ KdV');
equations in (4), it holds for KdV (k = 1) or for (mKdV')(k = 2), the modified KdV
equations, but not for other k. “Soliton resolution” has been proved in a few integrable
cases, like k = 1,2 in (¢KdV ), and p = 3, N = 1 in (NLS) (5) above ([27], [28], [38],
[2]). The last case is the only integrable case of (NLS) (see [30], [31], [2]). The proofs use
the method of “inverse scattering” [41]. Even in those cases, the proofs are challenging
and issues are still unresolved.

There have also been many results in perturbative regions (near traveling waves). How-
ever, the quest to establish “soliton resolution” in the large, for non—integrable models
which are time reversible and with conserved energies (Hamiltonian) has been a grand
challenge in partial differential equations for the past 50 years [35]. It remained open
despite many attempts (see [33], [34] for partial results on (NLS) in high dimensions).
The impasse was broken in the work of Duyckaerts—Kenig—Merle [6], on the 3-d radial
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energy critical wave equation. In the work [6], the authors gave a mathematical quantifi-
cation of the mechanism observed numerically and experimentally, yielding relaxation to
a “coherent structure”. This is the radiation of the excess energy to spatial infinity, which
appears in such diverse settings as the dynamics of gas bubbles in a compressible fluid
and in the formation of black holes in gravitational collapse.

Thus, to be more concrete, consider, for x € R3 (]RN ), t € R,

OPu — Au = u® (|u|ﬁu)
(NLW) Uulmo = ug € HY(R?) (RN) = {ug : Vuo € L?}
Opuli—o = uy € LA(R3) (RY)
This is a “focusing” equation, i.e. the linear and nonlinear terms have opposite signs, so

they “fight each other”. This is an energy critical equation, that is, for A > 0, the linear
and nonlinear terms have the same “strength” under scaling. For A > 0,

sz, 1) = ﬁu(x/u/x) (A%u(x/um)

2

1s also a solution, and

[ (o wr [z = (1 (w0, un) |l sz

The equation has a conserved energy, namely

1 1 1
E(ug,uq) :§/|Vuo|2—l—§/u%—6/u8,
N -2 2N

(==~ [ lul™2)

is preserved by the evolution. This equation has solutions that don’t disperse, for example
solutions to the elliptic equation

(7 AQ=Q° (|Q]7=Q), Qe H', Q #0,

are non-zero static solutions to (NLW). The one of least energy is

2
x
W) = 14+ 25k
or for general [V,
W) = (14 g )25
€Tr) = RN
N(N —-1) ’
up to sign, scaling and translation (for A > 0, zy € R,
1
:EW)\,JSO (-I') = j:)\u W(l’ — .730/)\)
2

(see [1], [32]).

There are also traveling wave solutions to (NLW). They are obtained by Lorentz trans-
formation of static solutions. For instance, in R3, if = R3, |ﬂ < 1, and () is a non-zero
static solution, Q{z,t) = Qfx — it 0) is a traveling wave solution, where Q{z,0) =
Q(7%3, T2, 73), when I'=1(1,0,0), |I| < 1.In fact, Duyckaerts—Kenig-Merle [7] have
proved that these are all the traveling solutions of (NLW). Moreover, from [26], [17], it
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follows that, in the radial case (so that there are no traveling wave solutions), the only

static solutions are
1
+Wyo(z) = i)\Nfg W(x/N).
2

These models are non-integrable.
We now turn to the main result in [6].

Theorem 1. ([6]) Let u be a radial solution of (NLW), N = 3, which exists fort > 0. Then
there exists J € NU{0}, a radial solution vy, of the linear wave equation (0?vy, — Avy, =
0), and for all 1 < j < Ji; € {£1} and \j(t) > 0,0 < \(f) € h(f) <€ ... <
Aj(t) < t (where < means that the ratio goes to 0 as t — o) such that

u() =y Aj‘(jt) W (/A (1)) + i () + o(1)

Oru(t) = Owvr(t) + o(1),

where o(1) denotes a term which tends to 0 in H' ast — oo (respectively in L?).

Jj=1

The key step in the proof is an “energy channel estimate” for radial solutions of (NLW),
N =3:

Let u be a radial solution of (NLW), when N = 3, which exists for all ¢ € R. Assume
that v Z 0, and u Z +W,. Then, there exist R > 0, n > 0, such that, for all £ > 0 or for
allt <0,

8) / V. ul2dz > 0.

lz|=[t|+R

The estimate (8) quantifies the “radiation of excess energy to spatial infinity” (see [6]).
However, the analog of (8) fails in the radial case for N > 3, and in the non-radial case,
for N > 3. In spite of this, some weaker results were obtained, using monotonicity after
time averaging, in analogy with some geometric flow problems. The results obtained in
this way, instead of holding for all times, hold for “well-chosen” sequences of times, in
the spirit of Tauberian arguments (see [5] for the use of this technique in a result that
preceded Theorem 1).

Theorem 2. ([27], [3], [19]) The analog of Theorem 1 holds for radial solutions of (NLW),
N > 3, but only for a “well-chosen” sequence of times {t,}, t, — oo, instead of for all
t — oo.

[27] deals with all odd N, N > 3, [3] with NV = 4 and [19] with all even N. A similar
result holds in the non-radial case, 3 < N < 6.

Theorem 3. ([18], [4], [8]) Let 3 < N < 6. Let u be a non-radial solution of (NLW),
fort > 0. Assume that supg., . ||(u(t), Owu(t))|| g1y 2 < 00. Then, there exists J €
N U {0}, a solution vy, of the linear wave equation, a “well-chosen” sequence of times

t, — oo, and foreach j, 1 < j < J, a non-zero solution Q’of (7), a vectorl? € RY, \l;| <
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1, scales \j,, > 0, positions x;,, € R" such that

J
wltn) = D)™ ¥ Q€ = 20/ A, 0) + vita) + (1)
le
drulty) = Z(Ajm)*%a@% (= 20/ Ay 0) + Oyvp (tn) + 0(1),
with j\l \ | |
V. Ajj: xj?nxj,f mE 0 A

so that the traveling waves are “decoupled”, and o(1) is a term going to 0 in H'( respec-
tively L?), with n — oo.

Remark 4. A method of proof relying on monotonicity after time average, as in Theorem
2 and Theorem 3, cannot give more than a decomposition for a “well-chosen” sequence
of times. In fact, an example due to Topping [37] for the case of the geometric harmonic
map heat flow shows this to be the case.

Moving forward, in trying to obtain versions of Theorem 2 and Theorem 3, which
hold for all times, we can use the decompositions in those theorems as a starting point.
We then need to see that the collision of two or more (well-separated) traveling waves
or two (well-separated) static solutions, produce “radiation” in non-integrable situations,
contrary to the Kruskal-Zabusky [40] numerics for the integrable cases. We have recently
succeeded in proving this for the radial case of (NLW) for all odd dimensions /V.

Theorem 5. ([9],[10],[11]) The decomposition in Theorem 1 is valid for (NLW) in the
radial case, in R for all N odd.
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