O Método da Fase Estacionária

Geraldo Ávila

Instituto de Matemática – UNICAMP
Caixa Postal 6065
13.081 – Campinas, SP

Ao Elon

1. Introdução.

Consideremos a expressão

\[I(k) = \int_{-\infty}^{\infty} f(x) e^{ikg(x)} dx, \] \hspace{1cm} (1)

onde \(f \) tem suporte compacto. Nosso objetivo é estudar o comportamento desta expressão para valores grandes de \(k \), com hipóteses convenientes de regularidade das funções (reais) \(f \) e \(g \). Num próximo artigo apresentaremos uma interessante aplicação dessa aproximação num problema de propagação de ondas.

De acordo com o chamado método da fase estacionária, a principal contribuição na integral acima provém dos pontos onde \(g'(x) = 0 \). É fácil entender por que deve ser assim: se \(g'(x_0) = 0 \), então "\(g \) se estaciona" ou torna-se "praticamente constante" numa vizinhança de \(x_0 \), de sorte que, nessa vizinhança,

\[e^{ikg(x)} = \cos kg(x) + i \sin kg(x) \]

quase não varia com o variar de \(x \), e a integral em (1) na referida vizinhança pode produzir um valor não nulo. Ao contrário, nos pontos \(x \) onde \(g'(x) \neq 0 \), o seno e o cosseno de \(kg(x) \) oscilam rapidamente com o variar de \(x \), já que \(k \) é grande, produzindo contribuições à integral em (1) que tendem a se cancelar mutuamente.

Heuristicamente, o método em questão pode ser assim explicado: se \(x_0 \) é o único ponto estacionário de \(g(x) \), então próximo a \(x_0 \), isto é, numa vizinhança \(|x - x_0| < \varepsilon \), o integrando em (1) pode ser aproximado por

\[
f(x_0)e^{ikg(x_0)}e^{i\frac{k}{2}(x-x_0)^2g''(x_0)},
\]

supondo, evidentemente, que \(g''(x_0) \neq 0 \). Admitindo que só a imediata vizinhança de \(x_0 \) contribua significativamente à integral em (1), teremos

\[
I(k) \approx f(x_0)e^{ikg(x_0)} \int_{-\varepsilon}^{\varepsilon} e^{i\frac{k}{2}g''(x_0)u^2} du.
\]

Esta última integral, quando estendida de \(-\infty\) a \(+\infty\), incorpora uma parte de importância secundária, pois \(k \) é um parâmetro muito grande. Então,

\[
I(k) \approx f(x_0)e^{ikg(x_0)} \int_{-\infty}^{\infty} e^{i\frac{k}{2}g''(x_0)u^2} du.
\]

Ora, esta última integral é do tipo de Fresnel (e foi calculada em [1], p. 80), logo

\[
I(k) \approx \frac{\sqrt{2\pi}f(x_0)e^{ikg(x_0)}e^{i\sigma\pi/4}}{\sqrt{|g''(x_0)|k}},
\]

onde \(\sigma = \pm 1 \) conforme \(g''(x_0) \) seja maior ou menor do que zero, respectivamente.

Evidentemente, este último resultado carece de uma demonstração rigorosa. Uma tal demonstração pode ser encontrada em livros, como [2], [6] e [7], porém numa forma que não faz transparecer com clareza o resultado (2). Apresentaremos, no presente trabalho, uma dedução bastante simples do método da fase estacionária para a integral (1). Esta dedução, restrita ao caso em que \(f \) tenha derivadas contínuas e suporte compacto, tem a vantagem de se estender facilmente ao caso de integrais múltiplas, com interessantes aplicações em problemas de propagação ondulatória.
2. Uma Demonstração do Método.

Estabeleceremos inicialmente três lemas preliminares.

Lema 1. Se \(f \) é uma função de suporte compacto e de classe \(C^1 \), e \(g \) é de classe \(C^2 \), com \(g'(x) \neq 0 \) no suporte de \(f \), então

\[
I(k) = O \left(\frac{1}{k} \right), \quad k \to \pm \infty.
\]

Demonstração: Basta integrar por partes em (1). Como \(f \) tem suporte compacto, obtemos

\[
I(k) = \int_{-\infty}^{\infty} \frac{f(x)}{ikg'(x)} \left(e^{ikg(x)} \right)' \, dx
\]

\[
= \frac{f(x)}{ikg'(x)} e^{ikg(x)} \bigg|_{-\infty}^{\infty} + \frac{i}{k} \int_{-\infty}^{\infty} \left(\frac{f(x)}{g'(x)} \right)' e^{ikg(x)} \, dx
\]

\[
= \frac{i}{k} \int_{-\infty}^{\infty} \left(\frac{f(x)}{g'(x)} \right)' e^{ikg(x)} \, dx.
\]

Ora, esta última integral é, em módulo, limitada por uma constante que só depende de \(f \) e \(g \), donde segue o resultado desejado.

Observação: A integração por partes no lema anterior pode ser repetida um número \(N \) de vezes, desde que \(f \) seja de classe \(C^N \) e \(g \) de classe \(C^{N+1} \). Como cada integração produz um fator \(1/k \), teremos, após \(N \) integrações,

\[
I(k) = O \left(\frac{1}{k^N} \right), \quad k \to \pm \infty.
\]

Lema 2. Se \(f \) é de suporte compacto e de classe \(C^1 \), e \(\lambda \) é um número real não nulo, então

\[
\int_{-\infty}^{\infty} f(x)xe^{i\lambda kx^2} \, dx = O \left(\frac{1}{k} \right), \quad k \to \pm \infty.
\]

Demonstração: Raciocinamos como no lema anterior, notando que

\[
x e^{i\lambda kx^2} = \left(\frac{e^{i\lambda kx^2}}{2i\lambda k} \right)'.
\]
Lema 3. Se \(f \) é uma função de classe \(C^1 \), que se anula numa vizinhança da origem, \(|x| \leq c \), e \(f(x) = K = \text{constante para } |x| \geq M > c \), então

\[
\int_{-\infty}^{\infty} f(x)e^{ikx^2} \, dx = O\left(\frac{1}{k}\right), \quad k \to \pm \infty.
\]

Demonstração: Restringiremos nossas considerações à integral de zero a \(+\infty \). O tratamento é inteiramente análogo para a integral de \(-\infty \) a zero.

Como no Lema 1, integramos por partes:

\[
\int_0^{\infty} f(x)e^{ikx^2} \, dx = \int_c^{\infty} \frac{f(x)}{2ikx} \left(e^{ikx^2} \right)' \, dx
\]

\[
= \frac{f(x)}{2ikx} e^{ikx^2} \bigg|_c^{\infty} + \frac{i}{2k} \int_c^{\infty} \left(\frac{f(x)}{x} \right)' e^{ikx^2} \, dx
\]

\[
= \frac{i}{2k} \int_c^{\infty} \left(\frac{f(x)}{x} \right)' e^{ikx^2} \, dx - \frac{i}{2k} \int_c^{M} \frac{f'(x)}{x} e^{ikx^2} \, dx - \frac{i}{2k} \int_c^{\infty} \frac{f(x)}{x^2} e^{ikx^2} \, dx.
\]

Daqui segue prontamente o resultado desejado, pois estas duas últimas integrais são limitadas, como é fácil verificar.

Teorema 4. Se \(f \) é uma função de suporte compacto e de classe \(C^2 \), e \(g \) é de classe \(C^6 \), possuindo um único ponto estacionário \(x_0 \), com \(g''(x_0) \neq 0 \), então

\[
I(k) = \int_{-\infty}^{\infty} f(x)e^{ikg(x)} \, dx = \sqrt{2\pi} f(x_0)e^{ikg(x_0)} + O\left(\frac{1}{k}\right) \quad (3)
\]

para \(k \to +\infty \), onde \(\sigma = \pm 1 \) conforme seja \(g''(x_0) > 0 \) ou \(g''(x_0) < 0 \), respectivamente.

Demonstração: Para simplificar os cálculos, vamos supor \(x_0 = 0 \). O caso \(x_0 \neq 0 \) requer modificações óbvias, que deixamos a cargo do leitor. Suporemos também \(g(0) = 0 \), o que se consegue fatorando \(e^{ikg(0)} \) na expressão integral de \(I(k) \).
A fórmula de Taylor com resto integral ([4], p. 262) nos permite escrever:

\[g(x) = \lambda x^2 h(x), \]

onde \(\lambda = g'''(0)/2 \) e

\[h(x) = 1 + \frac{x}{2\lambda} \int_0^1 (1 - t)^2 g'''(tx)dt \]

é uma função de classe \(C^3 \), com \(h(0) = 1 \). Vemos, pois, que a função

\[s = s(x) = x\sqrt{h(x)} \]

tem derivada

\[s'(x) = \frac{2h(x) + xh'(x)}{2\sqrt{h(x)}}, \]

que é positiva numa vizinhança \(I_\delta = (-\delta, \delta) \) da origem, onde, então, \(s(x) \) é crescente. Como também \(s(0) = 0 \), podemos concluir, pelo teorema da função inversa, que \(s = s(x) \) é um difeomorfismo do intervalo \(I_\delta \) num intervalo \(J_\delta = (-a, b) \), onde, \(a \) e \(b \), assim como \(\delta \) são números positivos. Notemos que

\[J(s) = \frac{dx}{ds} = \frac{1}{s'(s)} = \frac{2\sqrt{h(x)}}{2h(x) + xh'(x)}, \]

de sorte que \(J(0) = 1/\sqrt{h(0)} = 1 \).

Seja agora \(\alpha(x) \) uma função de classe \(C^2 \) satisfazendo as seguintes condições:

i) \(\alpha(x) = 1 \) para \(|x| \leq \frac{\delta}{2} \);

ii) \(\alpha(x) = 0 \) para \(|x| \geq \frac{2\delta}{3} \).

Em vista de (4) e (5) podemos escrever a integral em (3) na forma

\[I(k) = \int_{-\delta}^{\delta} \alpha(x)f(x)e^{ik\lambda s^2}dx + \int_{-\infty}^{\infty} [1 - \alpha(x)]f(x)e^{ikg(x)}dx. \]

A segunda destas integrais é da ordem de \(1/k \), pelo Lema 1. Na primeira das integrais introduzimos a mudança de variáveis dada pela função inversa de (5), obtendo, assim,

\[I(k) = \int_{-a}^{b} \alpha(x(s))J(s)f(x(s))e^{ik\lambda s^2}ds + O\left(\frac{1}{k}\right). \]

(7)
Para estudar esta última integral, introduzimos a função de classe C^2,

$$F(s) = \begin{cases}
0 & \text{se } s \leq -a \text{ ou } s \geq b, \\
\alpha(x(s))J(s)f(x(s)) & \text{se } -a \leq s \leq b,
\end{cases}$$

e escrevemo-la na forma

$$F(s) = F(0) + sR(s) = f(0) + sR(s), \quad (8)$$

onde

$$R(s) = \int_0^1 F'(ts)dt$$

resulta ser de classe C^1, pois J e f, bem como α, são de classe C^2. Por outro lado, seja $\beta(s)$ uma função como $\alpha(s)$, de classe C^1, que se anula fora de um intervalo $(-c, c)$, onde $[-c, c] \subset (-a, b)$, e tal que $\beta(s) = 1$ para $|s| \leq c/2$. Então, substituindo (8) em (7), obtemos:

$$I(k) = \int_{-\infty}^{\infty} F(s)e^{ik\lambda s^2}ds = \int_{-\infty}^{\infty} \beta(s)F(s)e^{ik\lambda s^2}ds$$

$$+ \int_{-\infty}^{\infty} [1 - \beta(s)]F(s)e^{ik\lambda s^2}ds + O\left(\frac{1}{k}\right).$$

Esta última integral é da ordem de $1/k$, pelo Lema 1, de sorte que

$$I(k) = f(0)\int_{-\infty}^{\infty} \beta(s)e^{ik\lambda s^2}ds$$

$$+ \int_{-\infty}^{\infty} \beta(s)sR(s)e^{ik\lambda s^2}ds + O\left(\frac{1}{k}\right).$$

Novamente, a segunda das integrais que afi aparece é da ordem de $1/k$ pelo Lema 2. Então

$$I(k) = f(0)\int_{-\infty}^{\infty} e^{ik\lambda s^2}ds$$

$$+ f(0)\int_{-\infty}^{\infty} [1 - \beta(s)]e^{ik\lambda s^2}ds + O\left(\frac{1}{k}\right). \quad (9)$$
Mais uma vez, a segunda destas integrais é da ordem de $1/k$, pelo Lema 3. Quanto à primeira delas, trata-se da integral de Fresnel, cujo cálculo discutimos no Nº 5 desta Revista. Supondo $k > 0$, temos ([1], p. 80):

$$
\int_{-\infty}^{\infty} e^{ik\lambda s^2} ds = \left(\frac{\pi}{|\lambda| k} \right)^{1/2} e^{i\sigma(\lambda)\pi/4},
$$

onde $\sigma(\lambda) = \pm 1$ conforme seja $\lambda > 0$ ou $\lambda < 0$ respectivamente. Substituindo (10) em (9), resulta

$$
I(k) = f(0) \left(\frac{\pi}{|\lambda| k} \right)^{1/2} e^{i\sigma(\lambda)\pi/4} + O \left(\frac{1}{k} \right), \quad k \to +\infty,
$$
que é o resultado (3) com $x_0 = 0$, $g(x_0) = 0$ e $\lambda = g''(0)/2$. Como dissemos, no início da demonstração, o caso geral só requer pequenas modificações, que ficam a cargo do leitor. Assim, damos por encerrada a demonstração do teorema.

Observação: Se a função g possui um número finito de pontos críticos não degenerados, x_1, x_2, \ldots, x_r, a fórmula (3) se generaliza, dando lugar à expressão

$$
\int_{-\infty}^{\infty} f(x) e^{ikg(x)} dx
$$

$$
= \sum_{j=1}^{r} \frac{\sqrt{2\pi f(x_j)} e^{ikg(x_j)+i\sigma_j\pi/4}}{\sqrt{|g''(x_j)| k}} + O \left(\frac{1}{k} \right),
$$

para $k \to +\infty$. O σ_j que aí comparece é $+1$ ou -1, conforme $g''(x_j)$ seja maior ou menor do que zero, respectivamente.

Para obtermos este resultado, consideramos funções $\alpha_j(x)$ de classe C^2, como a função $\alpha(x)$ já considerada: $\alpha_j(x) = 1$ numa vizinhança de x_j, digamos, $|x - x_j| \leq \delta_j/2$ e $\alpha_j(x) = 0$ para $|x - x_j| \geq \delta_j$; o δ_j sendo tal que a vizinhança $|x - x_j| \leq \delta_j$ esteja contida no suporte de f. Então

$$
\int_{-\infty}^{\infty} f(x) e^{ikg(x)} dx = \sum_{j=1}^{r} \int_{-\infty}^{\infty} \alpha_j(x) f(x) e^{ikg(x)} dx
$$

$$
+ \int_{-\infty}^{\infty} [1 - \sum_{j=1}^{r} \alpha_j(x)] f(x) e^{ikg(x)} dx,
$$

(12)
e, pelo Teorema 4, o j-ésimo termo da primeira somatória do segundo membro dá origem ao j-ésimo termo da somatória de (11). A última integral em (12) é da ordem de $1/k$, pelo Lema 1, o que completa a demonstração de (11).

3. O Caso n-Dimensional.

Vamos tratar agora da integral

$$I(k) = \int f(x)e^{ikg(x)}dx,$$

onde f e g são funções de \mathbb{R}^n em \mathbb{R}, $x = (x_1, \ldots, x_n)$, $dx = dx_1 \ldots dx_n$ e a integração se estende a todo o espaço \mathbb{R}^n (em verdade, apenas ao suporte de f).

O ingrediente principal do Lema 1 foi a integração por partes, notando que

$$e^{ikg(x)} = \frac{1}{ikg'(x)}(e^{ikg(x)})'.$$

Procuremos o análogo desta identidade no caso n-dimensional. Temos, sucessivamente:

$$\frac{\partial}{\partial x_j} e^{ikg(x)} = ik \frac{\partial g}{\partial x_j} e^{ikg(x)},$$

$$\sum_{j=1}^{n} \frac{\partial g}{\partial x_j} \frac{\partial}{\partial x_j} e^{ikg(x)} = ik |\nabla g(x)|^2 e^{ikg(x)},$$

$$e^{ikg(x)} = \frac{1}{ik} Le^{ikg(x)},$$

onde L é o operador diferencial linear

$$L = \frac{1}{|\nabla g(x)|^2} \sum_{j=1}^{n} \frac{\partial g}{\partial x_j} \frac{\partial}{\partial x_j}.$$

(É claro que devemos supor $\nabla g(x) \neq 0$ no suporte da função f.) Portanto, integrando por partes em cada uma das variáveis x_j,
supondo f de suporte compacto, teremos:

$$\int f(x)e^{ikg(x)}dx = \frac{1}{ik} \int f(x)L e^{ikg(x)}dx$$

$$= \frac{1}{ik} \int f(x) \sum_{j=1}^{n} \frac{\partial g/\partial x_j}{|\nabla g|^2} \frac{\partial e^{ikg(x)}}{\partial x_j} dx$$

$$= \frac{i}{k} \int \sum_{j=1}^{n} \frac{\partial}{\partial x_j} \left(\frac{f \partial g/\partial x_j}{|\nabla g|^2} \right) e^{ikg(x)} dx,$$

ou seja,

$$\int f(x)e^{ikg(x)}dx = \frac{1}{ik} \int f(x)L e^{ikg(x)}dx \quad (14)$$

$$= \frac{1}{ik} \int L^* f(x)e^{ikg(x)}dx,$$

onde L^* é o adjunto formal de L, assim definido:

$$(L^*f) = - \sum_{j=1}^{n} \frac{\partial}{\partial x_j} \left(\frac{f \partial g/\partial x_j}{|\nabla g|^2} \right).$$

A integral em (14) é limitada, independentemente de k, desde que $f \in C^1$ e $g \in C^2$. Podemos prosseguir integrando por partes, sucessivamente, cada nova integração exigindo mais regularidade das funções f e g. Em particular, N integrações nos levam ao teorema que enunciaremos a seguir como lema e que será utilizado para provar o Teorema 6 adiante.

Lema 5. Se f e g são funções reais definidas em \mathbb{R}^n, f de suporte compacto e de classe C^N e g de classe C^{N+1}, $\nabla g \neq 0$ no suporte de f, então

$$I(k) = \int f(x)e^{ikg(x)}dx = O\left(\frac{1}{k^N}\right), \quad k \to \pm \infty.$$

Passemos a considerar o caso em que g tenha um certo número finito de pontos estacionários, isto é, nos quais $\nabla g = 0$. Supomos agora que esses pontos sejam não degenerados, vale dizer,

$$\det\left(-\frac{\partial^2 g}{\partial x_i \partial x_j}\right) \neq 0.$$

Provaremos então o análogo do Teorema 4, que enunciaremos a seguir.
Teorema 6. Sejam \(f \) e \(g \) funções reais definidas em \(\mathbb{R}^n \), de classes \(C^N \) e \(C^{N+1} \) respectivamente, \(N \geq 5 \) e \(N > n/2 \). Se \(g \) possui um único ponto estacionário \(x_0 \), não degenerado, e se \(f \) é de suporte compacto, então

\[
I(k) = \int f(x)e^{ikg(x)}dx
\]

\[
= \frac{(2\pi)^{n/2} f(x_0)e^{ikg(x_0)} + i\sigma \pi/4}{\sqrt{|K(x_0)|k^{n/2}}} + O\left(\frac{1}{k^{(n+1)/2}}\right),
\]

para \(k \to +\infty \), onde \(K(x_0) \) é a curvatura Gaussiana da superfície \(z = g(x) \) no ponto \(x = x_0 \) e \(\sigma = \mu - \nu \), \(\mu \) sendo o número de curvaturas principais positivas e \(\nu \) o de negativas, da superfície \(z = g(x) \) no ponto \(x_0 \).

Demonstração: Como na demonstração do Teorema 4, vamos supor \(x_0 = 0 \) e \(g(0) = 0 \). O chamado Lema de Morse ([6], p. 285 ss) nos permite fazer uma mudança de coordenadas \(x = x(s) \) de classe \(C^4(C^{k-2} \text{ se } f \in C^k) \), levando uma vizinhança \(V \) de \(s = 0 \) numa bola \(|x| < a \) e tal que:

i) \(J(s) = \frac{\partial (x)}{\partial (s)} > 0 \) para todo \(s \in V \);

ii) \(J(0) = 1 \);

iii) \(g(x(s)) = \sum_{i=1}^{n} \lambda_i s_i^2 \) em \(|s| < a \).

Seja \(\gamma(x) = \alpha(|x|) \), onde \(\alpha \) é a função introduzida na demonstração do Teorema 4; se necessário, restringimos \(\delta \) de maneira que a bola \(|x| < \gamma \) esteja contida em \(V \). Podemos escrever

\[
I(k) = \int f(x)\gamma(x)e^{ikg(x)}dx + \int f(x)[1 - \gamma(x)]e^{ikg(x)}dx.
\]

Não havendo mais pontos singulares, esta última integral é da ordem de \(k^{-N} \), pelo lema anterior. Quanto à primeira, utilizamos a mudança de coordenadas \(x = x(s) \), obtendo, assim,

\[
I(k) = \int_{-\infty}^{\infty} \ldots \int_{-\infty}^{\infty} F(s)e^{ik\sum_{i=1}^{n} \lambda_i s_i^2}ds, \ldots , ds_n
\]

\[
= O\left(\frac{1}{k^N}\right), \ k \to \pm \infty,
\]

onde \(F(s) = f(x(s))\gamma(x(s))J(s) \) se \(|s| \leq a \) e \(F(s) = 0 \) se \(|s| \geq a \). Ora, esta última integral é agora tratada por integração repetida de \(n \) integrais simples. Cada uma destas integrais simples
é passível do mesmo tratamento dado à integral em (9). Isto nos leva a obter, para a integral em (16), um produto do tipo

\[F(0) \prod_{i=1}^{n} \left[\sqrt{\frac{\pi}{|\lambda_i| \lambda_i}} e^{i\sigma(\lambda_i) \pi/4} + O\left(\frac{1}{k^2}\right) \right]. \]

Basta notar agora que

\[F(0) = f(0), \quad g_{s,s}(0) = 2\lambda_i \quad \text{e} \quad K = \prod_{i=1}^{n} g_{s,s}(0), \]

para obtermos o resultado (15) com \(x_0 = 0 \) e \(g(0) = 0 \). O caso \(x_0 \neq 0 \) e \(g(x_0) \neq 0 \) só requer modificações óbvias e fica a cargo do leitor.

Observação: Se a função \(g \) possui um número finito de pontos críticos não degenerados, a fórmula (3) se generaliza como no caso unidimensional, dando-nos o análogo da expressão (12).

Bibliografia