Formas diferenciais e o grupo fundamental

Nicolau C. Saldanha

Seja A um subconjunto aberto de \mathbb{R}^n ; neste artigo mostramos como relacionar o espaço das 1-formas fechadas com o grupo fundamental de A. Mais precisamente, seja $Z^1(A)$ o espaço das 1-formas fechadas (i.e., com derivada nula) e $B^1(A)\subseteq Z^1(A)$ o sub-espaço das 1-formas exatas (i.e., que são derivadas de alguma 0-forma). Lembramos que 0-formas sobre A são funções de A em \mathbb{R} e 1-formas podem ser identificadas com campos de vetores via o produto interno usual. Com esta identificação, B^1 é o espaço dos gradientes de funções e Z^1 é o espaço dos campos de vetores que são localmente gradientes de alguma função. Definimos $H^1_{\mathrm{dR}}(A) = Z^1(A)/B^1(A)$; este espaço é conhecido como o primeiro espaço de cohomologia de de Rham de A (veja [1] para uma discussão detalhada da cohomologia de de Rham). Demonstraremos que $H^1_{\mathrm{dR}}(A) = \mathrm{Hom}(\pi_1(A), \mathbb{R})$.

Esta relação é bem conhecida, mas em geral é apresentada como conseqüência de outros teoremas muito mais gerais e poderosos, como o teorema de de Rham, o teorema de Hurewicz, o teorema dos coeficientes universais ou a definição de $H^1(A)$ em termos de funções de A em \mathbb{S}^1 . Nossa demonstração supõe apenas a definição de de Rham para $H^1(A)$ os fatos básicos sobre grupo fundamental e espaços de recobrimento (como em [5] ou [6]) e a existência de partições suaves da unidade (como em [3] ou [4]). O leitor que conhecer a definição de variedade perceberá que pode facilmente substituir A por uma variedade qualquer.

O aberto A admite um recobrimento universal \tilde{A} . Seja $p:\tilde{A}\to A$ a aplicação de recobrimento, e sejam $y_0\in \tilde{A}$ e $x_0=p(y_0)\in A$ pontos base para \tilde{A} e A. O grupo fundamental $\pi_1(A,x_0)$ admite pelo menos as três seguintes interpretações:

- (a) o conjunto dos caminhos fechados em A com extremos iguais a x_0 , identificando caminhos homotópicos;
- (b) o conjunto das imagens inversas de x_0 por p (identificamos aqui y_0 com e);
- (c) o conjunto das transformações de recobrimento de \tilde{A} , isto é, o conjunto das funções contínuas G de \tilde{A} em \tilde{A} satisfazendo $p \circ G = p$.

Vamos supor que o leitor esteja familiarizado com estas interpretações de π_1 . Um aberto $U\subseteq A$ é dito distinguido se a restrição de p a uma componente conexa \tilde{U} de $p^{-1}(U)$ é um homeomorfismo entre \tilde{U} e U. Pela definição de espaço de recobrimento, A é coberto por abertos distinguidos. Podemos tomar uma cobertura localmente finita de A por abertos distinguidos: $A=\bigcup_{\lambda\in\Lambda}U_\lambda$ (isto é, para cada ponto $x\in A$ existe uma vizinhança de x que tem intersecção não vazia com apenas um número finito de U_λ 's; a existência de uma cobertura localmente finita segue da paracompacidade de A (veja [2] para a definição de paracompacidade)). Tomemos agora uma partição suave da unidade subordinada a esta cobertura, ou seja, uma família de funções C^∞ , $h_\lambda: A\to [0,1]$, $\lambda\in\Lambda$, satisfazendo $\sum_{\lambda\in\Lambda}h_\lambda=1$ com o suporte de h_λ contido em U_λ (veja [3] ou [4] para a demonstração de que existe esta partição da unidade). Isto conclui a lista dos pré-requisistos.

Vamos construir a aplicação natural de H^1 para $\operatorname{Hom}(\pi_1(A, x_0), \mathbb{R})$. Suponha dada uma 1-forma fechada $\omega \in Z^1(A)$ e um elemento g de $\pi_1(A, x_0)$. Seja $\gamma : [0, 1] \to A$ um representante suave de g; associamos a ω e a g o valor da integral

$$\int_{[0,1]} \gamma^* \omega;$$

pelo teorema de Stokes é fácil verificar que este número independe da escolha de γ . A verificação de que esta aplicação define um homomorfismo de H^1 para $\operatorname{Hom}(\pi_1,\mathbb{R})$ é trivial (detalhes a cargo do leitor); devemos verificar que ela é injetora e sobrejetora.

Seja ω uma forma que induz o homomorfismo nulo de π_1 para \mathbb{R} : isto significa que a integral da forma sobre qualquer caminho fechado é sempre zero. Ou seja, podemos integrar a forma ω obtendo uma função v com $dv = \omega$, ou seja, ω é exata. Assim, nossa aplicação é injetora.

Seja ϕ um homomorfismo de π_1 em \mathbb{R} . Vamos construir uma forma ω que seja levada em ϕ . As componentes conexas das imagens inversas dos abertos U_{λ} formam uma cobertura localmente finita de \tilde{A} ; chamemos esta cobertura de $\tilde{U}_{\lambda,g}, \ \lambda \in \Lambda, \ g \in \pi_1(A,x_0)$. O segundo índice funciona da seguinte forma: escolhemos arbitrariamente uma componente conexa de $p^{-1}(U_{\lambda})$ e chamamos este aberto de $\tilde{U}_{\lambda,e}$; dado $g \in \pi_1(A)$, seja G a transformação de recobrimento correspondente a g: definimos $\tilde{U}_{\lambda,g}$ como $G(\tilde{U}_{\lambda,e})$. Seja $\tilde{h}_{\lambda,g}$ a função com suporte contido em $\tilde{U}_{\lambda,g}$ satisfazendo

$$\tilde{h}_{\lambda,g}|_{\tilde{U}_{\lambda,g}}=(h_{\lambda}\circ p)|_{\tilde{U}_{\lambda,g}};$$

ou seja, decompomos a função $h_{\lambda} \circ p$ como uma soma de funções com suportes contidos nas componentes conexas de $p^{-1}(U_{\lambda})$. Definimos agora uma função suave u de \tilde{A} em \mathbb{R} por

$$u = \sum_{\lambda \in \Lambda, g \in \pi_1} \phi(g) \tilde{h}_{\lambda, g};$$

como nossa cobertura é localmente finita, localmente a "série" reduz-se a uma soma finita, garantindo tanto a convergência quanto a suavidade. Afirmamos que a 1-forma ω desejada é definida por $p^*\omega=du$.

Seja $G_i: \tilde{A} \to \tilde{A}$ a transformação de recobrimento correspondente a $g_i \in \pi_1(A)$. Observe que $G_1(\tilde{U}_{\lambda,g_2}) = (G_1 \circ G_2)(\tilde{U}_{\lambda,e}) = \tilde{U}_{\lambda,g_1g_2}$ e $h_{\lambda,g_1g_2} \circ G_1 = h_{\lambda,g_2}$. Assim,

$$u \circ G_1 = \sum_{\lambda \in \Lambda, g \in \pi_1} \phi(g) \tilde{h}_{\lambda, g_1^{-1}g} = \sum_{\lambda \in \Lambda, g \in \pi_1} \phi(g_1 g) \tilde{h}_{\lambda, g}$$
$$= \sum_{\lambda \in \Lambda, g \in \pi_1} (\phi(g_1) + \phi(g)) \tilde{h}_{\lambda, g}$$
$$= \phi(g_1) + \sum_{\lambda \in \Lambda, g \in \pi_1} \phi(g) \tilde{h}_{\lambda, g} = \phi(g_1) + u.$$

Portanto, $G^*du=du$ para qualquer transformação de recobrimento G, ou seja, existe uma 1-forma fechada ω em A com $p^*\omega=du$. Finalmente, se γ é um caminho representando g,

$$\int_{[0,1]} \gamma^* \omega = \int_{[0,1]} \tilde{\gamma}^* du$$

$$= u(\tilde{\gamma}(1)) - u(\tilde{\gamma}(0))$$

$$= u(G(y_0)) - u(y_0) = \phi(g),$$

onde $\tilde{\gamma}$ é o levantamento de γ e G é a transformação de recobrimento correspondente a g, o que mostra que ω de fato está associada a ϕ , e conclui a demonstração.

Agradecimentos: Gostaria de agradecer a Elon Lages Lima por me incentivar a escrever este artigo.

Referências

- [1] R. Bott and L. W. Tu, Differential Forms in Algebraic Topology, Springer-Verlag (GTM 82), New York 1982
- [2] J. L. Kelley, General Topology, Second printing, Springer-Verlag (GTM 27), New York 1985
- [3] S. Lang, Real and Functional Analysis, Third edition, Springer-Verlag (GTM 142), New York 1993
- [4] E. L. Lima, Curso de Análise, vol. 2, 4² ed., Projeto Euclides, IMPA, CNPq 1995
- [5] ______, Grupo Fundamental e Espaços de Recobrimento, Projeto Euclides, IMPA, CNPq 1993
- [6] W. M. Massey, Algebraic Topology: An Introduction, Corrected eighth printing, Springer-Verlag (GTM 56), New York 1989

Departamento de Matemática PUC-Rio Rua Marquês de São Vicente 225 Gávea Rio de Janeiro, RJ 22453-900 BRASIL

email: nicolau@mat.puc-rio.br