Uma Nota sobre a Noção de Anel Valorizado

Nilson C. Bernardes Jr. e Dinamérico P. Pombo Jr.

No que se segue, A denotará um anel comutativo com elemento unidade $1 \neq 0$. Lembremos [8] que uma aplicação

$$|\cdot|:A\to \mathbf{R}_+$$

é um valor absoluto em A se as seguintes condições são satisfeitas para quaisquer $a,b\in A$:

(VA1) |a| = 0 equivale a a = 0;

(VA2) |ab| = |a||b|;

(VA3) $|a + b| \le |a| + |b|$.

Um anel valorizado é um anel munido de um valor absoluto. Note que se uma aplicação $|\cdot|:A\to \mathbf{R}_+$ satisfaz (VA1) e (VA2), então

$$|-1|=|1|=1$$
 e $|-a|=|a|$ para todo $a\in A$.

O estudo dos anéis valorizados e, em particular, o estudo dos corpos valorizados (Teoria das Valorizações), desempenha um papel importante em diversas áreas da matemática, tais como Álgebra Comutativa, Geometria Algébrica e Teoria dos Números. Aos leitores interessados na Teoria das Valorizações, sugerimos [1], [2], [3], [4], [7] e [8].

O objetivo da presente nota é provar que alguns resultados básicos da Teoria das Valorizações podem ser estendidos ao contexto dos anéis valorizados.

Os argumentos aqui utilizados, de caráter elementar, são baseados em idéias clássicas devidas a E. Artin (consultar [1] e [5]).

Vejamos alguns exemplos importantes de anéis valorizados que não são corpos.

(a) Seja Z[i] o anel dos inteiros de Gauss. A aplicação

$$a + ib \in \mathbf{Z}[i] \mapsto (a^2 + b^2)^{\frac{1}{2}} \in \mathbf{R}_+$$

é um valor absoluto em $\mathbf{Z}[i]$, que induz no subanel \mathbf{Z} de $\mathbf{Z}[i]$ o seu valor absoluto usual.

(b) Fixemos um natural primo p. Se $a \in \mathbb{Z}$, $a \neq 0$, existem um único natural n e um único inteiro d tais que d e p são primos entre si e $a = p^n d$. Definamos $|a|_n = p^{-n}$, e definamos $|0|_n = 0$. A aplicação

$$a \in \mathbf{Z} \mapsto |a|_p \in \mathbf{R}_+$$

é um valor absoluto em Z, satisfazendo

$$|a+b|_p \le \max\{|a|_p, |b|_p\}$$

para quaisquer $a, b \in \mathbf{Z}$.

(c) Sejam K um corpo e K[X] o anel dos polinômios na indeterminada X com coeficientes em K. Fixemos $p(X) \in K[X]$ irredutível sobre K. Se $f(X) \in K[X]$, $f(X) \neq 0$, existem um único natural n e um único $h(X) \in K[X]$ tais que h(X) e p(X) são primos entre si e $f(X) = (p(X))^n h(X)$. Definamos $|f(X)| = 2^{-n}$, e definamos |0| = 0. A aplicação

$$f(X) \in K[X] \mapsto |f(X)| \in \mathbf{R}_+$$

ć um valor absoluto em K[X], satisfazendo

$$|f(X) + g(X)| \le \max\{|f(X)|, |g(X)|\}$$

para quaisquer $f(X), g(X) \in K[X]$.

A partir deste instante, a menos que se diga explicitamente o contrário, $|\cdot|$ designará uma aplicação de A em \mathbb{R}_+ satisfazendo (VA1) e (VA2).

Para $\alpha, \beta \in \mathbf{R}$, consideremos as condições (U_{α}) e (V_{β}) abaixo, já estudadas no caso dos corpos (ver [2], p. 403, [6], pp. 51–52 e [8], p. 141).

$$(U_{\alpha}) |a+b| \le \alpha \max\{|a|,|b|\}$$
 para quaisquer $a,b \in A$.

$$(V_{\beta}) |a+b| \le \beta(|a|+|b|)$$
 para quaisquer $a, b \in A$.

Supondo (U_{α}) (respectivamente (V_{β})) verdadeira e fazendo a=1 e b=0, vemos que $\alpha \geq 1$ (respectivamente $\beta \geq 1$).

Proposição 1. (U_{α}) implica (V_{α}) e (V_{β}) implica $(U_{2\beta})$. Em particular, para que (U_{α}) seja válida para algum α , é necessário e suficiente que (V_{β}) seja válida para algum β .

Demonstração. Suponhamos (U_{α}) válida. Então

$$|a+b| \le \alpha \max\{|a|,|b|\} \le \alpha(|a|+|b|)$$

para quaisquer $a, b \in A$, e (V_{α}) é válida.

Suponhamos (V_{β}) válida. Então

$$|a+b| \le \beta(|a|+|b|) \le (2\beta) \max\{|a|,|b|\}$$

para quaisquer $a, b \in A$, e $(U_{2\beta})$ é válida.

Nesta nota provaremos que os valores absolutos são precisamente as aplicações $|\cdot|$ para as quais (U_2) é válida. Como conseqüência, veremos que $|\cdot|^{\mu}$ é um valor absoluto (para uma escolha conveniente de μ) caso $|\cdot|$ satisfaça (U_{α}) para algum α . Além disso, daremos um exemplo mostrando que há aplicações $|\cdot|$ satisfazendo alguma condição (U_{α}) , sem entretanto serem valores absolutos.

Definição 2. Diz-se que $|\cdot|$ é $n\tilde{a}o$ -arquimediano quando (U_1) é satisfeita. Neste caso, $|\cdot|$ é um valor absoluto em A.

Proposição 3. Suponhamos $|\cdot|$ um valor absoluto em A. Para que $|\cdot|$ seja não-arquimediano, é necessário e suficiente que o conjunto $\{|n|; n \in \mathbf{Z}\}$ seja limitado (\mathbf{Z} considerado como um subconjunto de A da maneira usual).

Demonstração. Se $|\cdot|$ é não-arquimediano, segue por indução que $|n| \le 1$ para todo $n \in \mathbb{N}$. Logo, $|n| \le 1$ para todo $n \in \mathbb{Z}$.

Reciprocamente, admitamos que exista L>0 tal que $|n|\leq L$ para todo $n\in {\bf Z}.$ Sejam $a,b\in A$ e $n\in {\bf N}^*.$ Então

$$|a+b|^n = |(a+b)^n| = |\sum_{k=0}^n \binom{n}{k} a^k b^{n-k}| \le \sum_{k=0}^n |\binom{n}{k}| |a|^k |b|^{n-k}$$

$$\leq L(\sum_{k=0}^{n} |a|^{k} |b|^{n-k}) \leq L(n+1) (\max\{|a|,|b|\})^{n}.$$

Portanto,

$$|a+b| \leq \sqrt[n]{L} \sqrt[n]{n+1} \max\{|a|,|b|\}.$$

Fazendo n tender para ∞ vem

$$|a+b| \le \max\{|a|, |b|\},$$

provando o desejado.

Passemos agora ao resultado principal.

Teorema 4. Para que $|\cdot|$ seja um valor absoluto em A, é necessário e suficiente que (U_2) seja válida.

Demonstração. Como a condição é evidentemente necessária, provemos que ela é suficiente.

Mostremos, por indução, que se $n \in \mathbb{N}^*$ e $a_1, \ldots, a_{2^n} \in A$, então

$$|a_1 + \dots + a_{2^n}| \le 2^n \max\{|a_1|, \dots, |a_{2^n}|\}.$$

Por hipótese, a desigualdade é válida para n=1. Suponhamos o resultado verdadeiro para $n\in \mathbb{N}^*$, e sejam $a_1,\ldots,a_{2^{n+1}}\in A$. Então

$$\begin{aligned} |a_1| + |a_{2^n} + a_{2^n+1} + \dots + a_{2^{n+1}}| &\leq 2 \max\{|a_1 + \dots + a_{2^n}|, |a_{2^n+1} + \dots + a_{2^{n+1}}|\} \\ &\leq 2^{n+1} \max\{|a_1|, \dots, |a_{2^n+1}|\}. \end{aligned}$$

Sejam agora $a_1, \ldots, a_m \in A$, e tomemos $n \in \mathbb{N}^*$ com $m \leq 2^n < 2m$. Então

$$|a_1 + \dots + a_m| = |a_1 + \dots + a_m + \underbrace{0 + \dots + 0}_{2^n - m \text{ vezes}}| \le 2^n \max\{|a_1|, \dots, |a_m|\}$$

$$\leq (2m) \max\{|a_1|,\ldots,|a_m|\},\,$$

o que implica

$$|m| \le 2m$$
 (fazendo $a_1 = \ldots = a_m = 1$)

e

$$|a_1 + \cdots + a_m| \le (2m)(|a_1| + \cdots + |a_m|).$$

Finalmente, sejam $a, b \in A$ e $m \in \mathbb{N}^*$. Então

$$|a+b|^{m} = |(a+b)^{m}| = |\sum_{k=0}^{m} {m \choose k} a^{k} b^{m-k}| \le 2(m+1) \left(\sum_{k=0}^{m} |{m \choose k}| |a|^{k} |b|^{m-k} \right)$$

$$\le 4(m+1) \left(\sum_{k=0}^{m} {m \choose k} |a|^{k} |b|^{m-k} \right) = 4(m+1) (|a|+|b|)^{m}.$$

Logo,

$$|a+b| \le \sqrt[m]{4} \sqrt[m]{m+1} (|a|+|b|).$$

Fazendo m tender para ∞ obtemos

$$|a+b| \le |a| + |b|,$$

concluindo assim a demonstração.

Definição 5. Suponhamos que $|\cdot|$ satisfaça (U_{γ}) para algum γ . Definamos

$$c = c_{|\cdot|} = \inf\{\beta; |\cdot| \text{ satisfaz } (V_\beta)\} \quad \text{e} \quad C = C_{|\cdot|} = \inf\{\alpha; |\cdot| \text{ satisfaz } (U_\alpha)\}.$$

Proposição 6. Para $|\cdot|$ como na Definição 5, as condições (V_c) e (U_C) são satisfeitas. Além disso, $1 \le c \le C \le 2c$.

Demonstração. Claramente, (V_c) e (U_C) são satisfeitas. Daí decorre a segunda afirmação em vista da Proposição 1.

Tem-se a seguinte consequência do Teorema 4, já conhecida no caso dos corpos ([6], p. 56).

Corolário 7. Para $|\cdot|$ como na Definição 5, $c = \max\{1, \frac{C}{2}\}.$

Demonstração. Admitamos, primeiramente, $1 \le C \le 2$. Então $|\cdot|$ satisfaz (U_2) . Pelo Teorema 4, $c = 1 = \max\{1, \frac{C}{2}\}$.

Admitamos, agora, C>2, e escrevamos $C=2^h$ (h>1). Para quaisquer $a,b\in A, |a+b|\leq 2^h\max\{|a|,|b|\}$, e portanto $|a+b|^{\frac{1}{h}}\leq 2\max\{|a|^{\frac{1}{h}},|b|^{\frac{1}{h}}\}$. Logo, a aplicação $a\in A\mapsto |a|^{\frac{1}{h}}\in \mathbf{R}_+$, que obviamente satisfaz (VA1) e (VA2), também satisfaz (U_2) . Pelo Teorema 4, $|a+b|^{\frac{1}{h}}\leq |a|^{\frac{1}{h}}+|b|^{\frac{1}{h}}$, ou seja, $|a+b|\leq (|a|^{\frac{1}{h}}+|b|^{\frac{1}{h}})^h$. Mas, como é fácil verificar,

(*)
$$(x+y)^h \le 2^{h-1}(x^h + y^h)$$
 para quaisquer $x, y \in \mathbf{R}_+$,

o que fornece

$$(|a|^{\frac{1}{h}} + |b|^{\frac{1}{h}})^h \le 2^{h-1} \left((|a|^{\frac{1}{h}})^h + (|b|^{\frac{1}{h}})^h \right) = 2^{h-1} (|a| + |b|).$$

Portanto, $|a+b| \leq 2^{h-1}(|a|+|b|)$ para quaisquer $a,b \in A$, e assim $c \leq 2^{h-1}$. Como $c \geq \frac{C}{2} = 2^{h-1}$, então $c = 2^{h-1} = \max\{1,\frac{C}{2}\}$, concluindo a demonstração.

Observação 8. (a) O Corolário 7 implica a parte relevante do Teorema 4. Com efeito, suponhamos que $|\cdot|$ satisfaça (U_2) . Então $C \leq 2$, e do Corolário 7 obtém-se c=1, ou seja, $|\cdot|$ é um valor absoluto em A.

(b) Resulta da demonstração do Corolário 7 que se $|\cdot|$ satisfaz (U_{α}) para algum α , então existe $\mu \geq 1$ tal que $|\cdot|^{\mu}$ é um valor absoluto em A.

Vejamos agora o exemplo prometido após a demonstração da Proposição 1.

Exemplo 9. Seja $|\cdot|$ o valor absoluto usual em **Z** e seja $\lambda > 1$. Definamos $|a|_{\lambda} = |a|^{\lambda}$ para $a \in \mathbf{Z}$. Obviamente, $|\cdot|_{\lambda}$ satisfaz (VA1) e (VA2). Além disso, por (\star) ,

$$|a+b|_{\lambda} = |a+b|^{\lambda} \le (|a|+|b|)^{\lambda} \le 2^{\lambda-1}(|a|^{\lambda}+|b|^{\lambda}) = 2^{\lambda-1}(|a|_{\lambda}+|b|_{\lambda})$$

para quaisquer $a,b\in \mathbf{Z}$; portanto, $|\cdot|_{\lambda}$ satisfaz $(V_{2^{\lambda-1}})$. Suponhamos que $|\cdot|_{\lambda}$ satisfaça (V_{β}) . Fazendo a=b=1, vem $2^{\lambda}=|2|_{\lambda}\leq 2\beta$. Logo, $c=2^{\lambda-1}$. Como $2^{\lambda-1}>1$, $|\cdot|_{\lambda}$ não é um valor absoluto em \mathbf{Z} .

Referências

- [1] E. Artin, Algebraic Numbers and Algebraic Functions, New York University, 1951.
- [2] N. Bourbaki, Commutative Algebra, Hermann & Addison-Wesley, 1972.
- [3] J. W. S. Cassels, Local Fields, Cambridge University Press, 1986.
- [4] O. Endler, Valuation Theory, Springer-Verlag, 1972.
- [5] I. Kaplansky, Topological methods in valuation theory, Duke Math. J. 14 (1947), 527-541.
- [6] L. Nachbin, Espaços Vetoriais Topológicos, Notas de Matemática 4, 1948.
- [7] J.-P. Serre, Corps Locaux, Hermann, 1962.
- [8] S. Warner, Topological Fields, Notas de Matemática 126, North-Holland, 1989.

Instituto de Matemática Universidade Federal Fluminense Rua Mário Santos Braga s/nº, Niterói 24020-140, RJ, Brasil.