Transformações Lineares e Escalonamento de Matrizes

Airton S. de Medeiros

Das várias aplicações do processo de escalonamento de uma matriz, algumas dizem respeito à solução prática de certos problemas de Álgebra Linear, relacionados com transformações lineares $A \colon \mathbb{R}^n \to \mathbb{R}^m$. Dentre estes destacamos:

- (1) Determinar uma base de Im(A) (imagem de A).
- (2) Determinar uma base de Ker(A) (núcleo de A).
- (3) Determinar a inversa de A, quando esta é invertível.

A solução destes problemas (por escalonamento) é encontrada na maioria dos livros-textos de Álgebra Linear (veja p.ex. [1]).

Apresentaremos a seguir uma maneira alternativa de resolver estes problemas, baseada na Observação, bastante ingênua, enunciada abaixo no decorrer da discussão.

Este processo alternativo apresenta as seguintes peculiaridades:

(i) Unifica a solução dos problemas (1) e (2) acima, fornecendo concomitantemente informações adicionais. Mais precisamente:

Obtemos, de uma só vez, bases do núcleo e da imagem da transformação, e mais, bases do \mathbb{R}^n e do \mathbb{R}^m em relação às quais a matriz da transformação é da forma diag $(1,\ldots,1,0,\ldots,0)$, onde diag $(\lambda_1,\ldots,\lambda_\ell)$ representa a matriz diagonal $n\times m$, $d=[d_{ij}]$, tal que $d_{ii}=\lambda_i$ e $d_{ij}=0$ se $i\neq j$. Onde, evidentemente, $\ell=\min(n,m)$.

(ii) Dá uma outra justificativa para o método canônico de obter a inversa de uma transformação por escalonamento, bem como o gene-

raliza, permitindo determinar de forma análoga inversas, à direita, e à esquerda, de transformações de posto máximo.

A fim de descrever precisamente este processo necessitamos de algumas considerações:

Se p e q são matrizes com o mesmo número de linhas, denotaremos por $[p \mid q]$ a matriz (agregada de p e q) cujos elementos, de cada linha, são: os elementos da linha correspondente de p, seguidos pelos elementos da mesma linha de q.

Na verdade, estamos interessados numa classe particular de tais matrizes associada a uma dada transformação A. Precisamente, as matrizes $[p \mid q]$ onde as imagens, por A, dos vetores-linha de q são exatamente os vetores-linha de p.

Para simplificar a linguagem diremos que uma tal matriz $[p \mid q]$ é A-relacionada.

Relembramos que as operações elementares sobre as linhas de uma matriz são:

- 1 Trocar a posição de duas linhas.
- 2 Somar a uma linha um múltiplo de outra linha.
- 3 Multiplicar uma linha por um número diferente de zero.

Finalmente, decorre imediatamente da linearidade de A a seguinte

Observação: Se $[p \mid q]$ é A-relacionada então, a matriz $[p' \mid q']$, obtida a partir de $[p \mid q]$ através da aplicação de operações elementares sobre as linhas, é também A-relacionada.

Passemos agora à descrição do processo:

Dada a transformação A, tomemos a matriz A-relacionada $[p \mid q]$, onde $p = a^t$ é a transposta da matriz a da transformação, e $q = I_n$ é a matriz identidade $n \times n$. Aplicando sobre as linhas de $[p \mid q]$ operações elementares que transformem p numa matriz escalonada p' obteremos, de acordo com a Observação, uma matriz A-relacionada $[p' \mid q']$. Teremos então que:

- (a) Os vetores-linha não nulos de p' formam uma base de Im(A).
- (b) Os vetores-linha de q' que correspondem às linhas nulas de p' formam uma base de Ker(A).
 - (c) Os vetores-linha de q' formam uma base do \mathbb{R}^n , e se estendermos

arbitrariamente a base de Im(A), determinada no primeiro item, a uma base do \mathbb{R}^m , obteremos as bases a que nos referimos em (i).

Isto, evidentemente, justifica completamente as afirmações apresentadas em (i).

Prosseguindo, se A é sobrejetora (neste caso $n \geq m$) a matriz p' tem a forma $p' = \begin{bmatrix} p'_1 \\ 0 \end{bmatrix}$, onde p'_1 é uma matriz $m \times m$, triangular superior, de posto m. Assim, partindo da matriz A-relacionada $[p'_1 \mid q'_1]$, formada pelas m primeiras linhas de $[p' \mid q']$, podemos continuar o processo de escalonamento de p'_1 , por Gauss-Jordan, e obteremos, no final, uma matriz A-relacionada da forma $[I_m \mid r]$. Portanto, a transformação $D \colon \mathbb{R}^m \to \mathbb{R}^n$, cuja matriz é r^t , é uma inversa à direita de A.

O caso onde a transformação A é injetora reduz-se ao caso anterior tomando-se a transformação adjunta A^* (que é sobrejetora), e observando que D é uma inversa à direita de A^* se, e somente se, $E=D^*$ é uma inversa à esquerda de A.

Vale observar que neste caso ocorre uma certa simplificação:

Ao aplicarmos o procedimento anterior à transformação A^* , a matriz A^* -relacionada inicial do processo é exatamente $[a \mid I_m]$, e a matriz r, encontrada no final, é tal que r^t é a matriz de D, inversa à direita de A^* . Logo, $E=D^*$ tem por matriz a própria matriz r. Em particular, quando m=n, recuperamos o processo usual de determinação da inversa de A por meio de escalonamento.

Referências

[1] Lima, Elon Lages - Álgebra Linear. Coleção Matemática Universitária, IMPA, 4ª edição.

Departamento de Matemática Aplicada Instituto de Matemática, UFRJ Ilha do Fundão Rio de Janeiro - RJ e-mail: airton@impa.br